Data Processing Inequality

Formula of diminishing influence.

Formula

XYZI(X;Y)I(X;Z) \begin{aligned} X \to Y \to Z \Rightarrow I(X; Y) \geq I(X; Z) \end{aligned}

Proof

I(X;Y,Z)=I(X;Z)+I(X;YZ)=I(X;Y)+I(X;ZY)I(X;ZY)=0(logP[X;ZY]P[XY]P[ZY]=logP[ZX,Y]P[XY]P[XY]P[ZY]=log1=0)I(X;Y)=I(X;Z)+I(X;YZ)I(X;Z) \begin{aligned} I(X; Y, Z) &= I(X; Z) + I(X; Y | Z) \\ &= I(X; Y) + I(X; Z | Y) \\ \because I(X;Z|Y) &= 0 \left(\log \frac{P[X;Z|Y]}{P[X|Y] \cdot P[Z|Y]} = \log \frac{P[Z|X,Y] \cdot P[X|Y]}{P[X|Y] \cdot P[Z|Y]} = \log 1 = 0 \right ) \\ \therefore I(X; Y) &= I(X; Z) + I(X; Y | Z) \geq I(X; Z) \end{aligned}

Usage

I(X;Z)=H(X)H(XZ)H(X)H(XY)=I(X;Y)H(XZ)H(XY) \begin{aligned} I(X;Z) &= H(X) - H(X | Z) \\ &\leq H(X) - H(X|Y) = I(X; Y) \\ \Longrightarrow H(X|Z) &\geq H(X|Y) \end{aligned}

Interpretation

by Jon